
JOURNAL OF COMPUTATIONAL PHYSICS 98, 174-l 77 (1992)

NOTE

A Fast Algorithm for Spectral Differentiation

1. INTRODUCTION The required regularity is that either

Suppose we know the value of a function at several points
and we want to approximate its derivative at those points.
One way to do this is to find the polynomial that passes
through all of the data points, differentiate it analytically,
and evaluate this derivative at the grid points. Or, we could
generalize this idea by replacing polynomials by linear
combinations of some other set of functions. In either case,
if u= (u(x,), u(x,), u(x,)) is the vector of function
values, and u’ = (u’(x,), z/(x,), z/(x,)) is the vector of
approximate derivatives obtained by this idea, then there
is a matrix D such that

di,j=d”pi,.p, or di,,= -4-r..-, (2)

u’ = Du. (1)

Such a matrix is called a derivative matrix [11.
Approximating differentiation by matrix multiplication is

a very common computation, and a somewhat expensive
one. A matrix-vector multiplication takes 0(n’) operations.
This would take up most of the cpu time if it were used in
a numerical scheme to solve a PDE, since most of the other
computations in a PDE solution take only O(n) operations.
At least, this is true using an explicit time-stepping scheme.
With an implicit scheme, there are systems of equations to
be solved and it is not clear what would use up the most
CPU time. But with either type of scheme, any reduction in
the number of operations would be very welcome.

for 0 d i, j 6 n. The first corresponds to the property that if
the vector containing function values is reversed, i.e.,
(u,, Ul, ..., u,) is replaced by (u,, u, ~ 1, ..‘, uO) then the
derivative of the function is also reversed. The second
regularity means that if the vector is reversed, the derivative
is reversed and also multiplied by - 1. If the gridpoints are
arranged symmetrically about the center of the domain of
approximation, and the basis functions have enough sym-
metry with respect to the center of the domain, then the
matrix will have one of these properties. For example, the
Chebyshev first derivative matrix has the second property,
and the Chebyshev second derivative matrix has the first
property.

The entries of the Chebyshev first derivative matrix can
be found in [2 or 31. The gridpoints used by the Chebyshev
derivative matrix are

7ci
x,=cos -) 0 i=OtoN.

n

Ifweletc,=c,=2andcj=1,i=1ton-1,thentheentries
of the matrix are

The matrices used for spectral differentiation have
various regularities in them. It is reasonable to hope that
they can be exploited to reduce the number of operations
needed to do the multiplication. For some matrices this is
already known to be true, for example the matrices based on
trigonometric interpolation at equally spaced points, [l-3],
or polynomial interpolation at the extrema of a Chebyshev
polynomial [2, 31. They allow a matrix-vector multipli-
cation in O(n log n) operations by using fast Fourier or
cosine transforms and O(n) operations on the transformed
vector. In this paper we present a simple algorithm for doing
the matrix multiplication in just over half the number of
operations required by the usual algorithm. It requires
that the matrix have a kind of symmetry that almost all
derivative matrices have.

d, =Ci((-)ijkk
Jk

ck cxjpxk)’
.i#k

d,? = -xj
2(1-x;)’

2n2+ 1
do,,= -dm,n=6.

We can see that c,-, = cj. Since x,~ j = -xj we have
x,-x,= -(X,-~-X,_,). Finally, since (-l)n~r+n~i=
(-l)i+j, it is obvious that the off -diagonal entries have the
second property. Since is also clear that the diagonal terms
have the second property, the claim is proved.

j Z 0, 4 (4)

0021-9991/92 S3.00

Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

174

A FAST ALGORITHM FOR SPECTRAL DIFFERENTIATION 175

More generally, any odd-derivative matrix based on
polynomial interpolation at a set of points which is sym-
metric about the center of the domain will have the second
property. And any such even-derivative matrix will have the
first property. So the matrix that uses data at the zeroes of
a Legendre polynomial will have this property. The entries
of the Legendre first and second derivative matrices can be
found in [3].

So we only have to compute the left half of e’. This takes
only n2/4 multiplications and (n2/4) - (n/2) additions.

Similarly, with o we have

o:= i di,jo,=(“p~“2di,jo,+d;,n-,oH+,
j=O J=o

= C (di,j-d;,n-j) oj. (11)

2. DERIVATION OF THE ALGORITHM
But o’ is even, i.e., 0; ~ j = oj :

The fast differentiation algorithm is based on an odd-
even decomposition of the function vector. Suppose we start
with the second property, d, j = -d,, _ i,np j. Let u be the
function vector, and e and o be its even and odd parts. For
the moment, assume that the number of gridpoints, n + 1, is
even. The case of n + 1 odd is slightly more complicated and
will be treated later. So

u, = e, + oi, iE (0, 1, n}, (5)

,=o /=O

(n ~ l)/2
= 2 -di3H-jo,-d,(-oj)

,=o
(n ~ I J/2

= 1 (d,-di,,+j)oj=o:.
/=O

(12)

where So we only have to compute the left half of o’ as well. This
takes the same number of operations as for the computation

(ha) of e’.

(6b)
Finally, to reconstruct u’ from e’ and o’ we have

and now 2.4: = ei + 0: (13a)

e, = e n-i,

oi= -0 n-i’

and
(7)

uA-,=eLpi +oLpj= -el+o: (13b)

By the linearity of the derivative operator, we have for O<i<n/2.

u’=Du=D(e+o)=De+Do=e’+o’, (8)
The odd-even decomposition takes n additions, the odd-

even reconstruction takes n additions and the two matrix-

so we can differentiate e and o separately and then add them
vector multiplications take 2((n2/4) mults + (n2/4) - (n/2)
adds) for a total of

together later; e’ is given by

ei = i di,,ej= ‘npi’f2 di3jej+di.,p je,p
j=O j=O

= C (d;,j+ d,,-j) ej-,
,=O

since e is even. But e’ is odd, that is, e; ~ j = - ej :

(n- 1)/2
ei-,= 1 d,~i,jej++d,~i.n~je,~,

j=O

(n ~ I l/Z
= C -di,,-jej-di,je,

,=o
(n - 1 l/2

=- c (d,,,+d,,,_,)e,=-e:.
j=O

$PZ’ multiplies + kn’ + n additions,

compared to

(14a)

(9) n2 multiplies + (n’ -n) additions (14b)

for the normal algorithm.
Many people who have read this paper have commented

on the similarity between this algorithm and FFT. Both
algorithms use the idea of breaking the problem into two
pieces, solving them separately, and gluing them back
together cheaply. However, the FFT is able to use the idea
on the smaller subproblems, while the even-odd decom-
position has to stop at one step. If it could be repeated past

(10) the first step, it would be much more interesting than it is
now. Unfortunately, I do not know how to do this.

176 ALEX SOLOMONOFF

Now we turn to the case where n + 1 is odd. We have been
assuming that the sum Cy= ,, d,ej can be broken up into two
pieces of equal size. If n + 1 is odd then this cannot be done.
If the sum cj d,ej + di,,- je,P j goes from 0 to n/2 - 1 then
we miss the n/2 term. If it goes from 0 to n/2 then we count
the n/2 term twice. This is not hard to fix. We can let the sum
go from 0 to n/2 and then divide the i, n/2-terms (the
rightmost column) of the matrix d, + di,, ~ j by 2. In addi-
tion, e,,, is nonzero so we must include it in our sum, but
ei,* is zero so there is no need to compute it. So the matrix
d, + d,, ~ j has n/2 rows and 1 + n/2 columns. For the odd
terms, o,,~ - - 0, so we will not include it in our sums, and the
issue of counting it twice does not occur; o$, is nonzero
though, and we do need to compute it. So the matrix
4, - di,,-, has 1 + n/2 rows and n/2 columns. The oddeven
decomposition and reconstruction steps are unchanged.

The case for d, = d,, ~ i,n ~ j is exactly the same as the case
d,= -dn-i,,-j, at least for n + 1 even, but with one
change: e’ is even and o’ is odd, rather than the reverse as
before, so the reconstruction is

and

u: = ei + 0; (15a)

for 0 < i < n/2. The derivation of the algorithm is the same
as the first case, except for some sign changes.

3. MAPPINGS

Frequently, you do not want to use an unmodified
spectral differentiation matrix, because either the domain of
approximation is wrong, or the distribution of gridpoints is
undesirable, or both. In such cases, a mapping from the new
domain to the old one is used. Usually, the even-odd
decomposition can still be used.

Suppose g(x) is the mapping, then we want to compute
the derivative of u(g(x)). By the chain rule, this is

u’kb)) g’(x).

The discrete version of this is

(16)

D, u = G’Du, (17)

where D, is the new derivative matrix associated with the
mapping g, G’ has g’(x,) on its main diagonal, and D is the
unmapped derivative matrix as before. If g is antisymmetric
(g must be monotone; it cannot be symmetric). Then the
matrix G’D will still have symmetry,

(G’D),-i,.-Y=g’(Xn~i)D”~;,.~,= -g’(xn-i)D,j

= - g’(x,) Di, j = - (G’D),, (18)

since the derivative of an antisymmetric function is sym-
metric. So an antisymmetric mapping can be implemented
with no increase in the number of computations. But even if
the mapping is not antisymmetric, multiplication of a vector
by G’ only takes n operations, so the differentiation would
still be almost twice as fast as the normal algorithm.

The case of the second derivative is somewhat more
complicated:

C4&))1”= U”MX)) g”(X) + u’(g(xI) g”(x). (19)

The discrete approximation to this is

D;u=(G’~D~+G”D)u, (20)

where 0; is the new second derivative matrix associated
with the mapping g and D2 is the unmapped second
derivative matrix. If g is an antisymmetric function, then
this matrix still has the desired symmetry, g” is a symmetric
function, and g” is antisymmetric, so

=g’2(Xn~i)D~~r,n-,+g”(X,-;)Dn-i,n~j

= g’2(xi) D;.+ g”(x;) D,

= (G’2D2 + G”D),. (21)

This works if g is antisymmetric, but if g is not antisym-
metric, then there does not seem to be any way to make the
even-odd decomposition work. At least this is true if you
only want the second derivative. If you want to compute
both D,u and Diu, then you can compute Du and D2u
using the even-odd decomposition, and then compute
D,u and Diu from them using only U(n) operations. The
situation with the third derivative is very similar to the
second derivative.

4. RESULTS

We have used this algorithm to multiply the Chebyshev
derivative matrix by a vector. We measured the execution
time for this and compared it to the execution time of the

TABLE I

Execution Time, Sun Sparcstation

n Normal matrix multiply Even-odd multiply Cosine transform

16 1.5 ms 1.3 ms 2.1 ms
32 3.3 ms 1.5 ms 3.0 ms
64 10.6 ms 5.4 ms 4.5 ms

128 37.5 ms 19.9 ms 11.8 ms
256 150.7 ms 75.1 ms 19.7 ms

A FAST ALGORITHM FOR SPECTRAL DIFFERENTIATION 177

TABLE II

Execution Time, Cray Y-MP

n Normal matrix multiply Even-odd multiply

16 4.4 /its 5.5 /Is
32 8.4 ps 9.8 ps
64 23.5 ps 18.5 fis

128 60.5 ps 42.1 ps
256 175.7 ps 112.3 ps

normal matrix multiplication algorithm. The programs
were run on a Cray Y-MP, and on a Sun Sparcstation. In
addition, on the Sparcstation, the algorithm was compared
to an O(n log n) algorithm that uses cosine transforms. No
attempt was made to optimize any of this code. The results
are in Tables I and II.

On the Sparcstation, the even-odd multiply is roughly
twice as fast as the normal matrix multiply for all values of
n. In addition, the even-odd multiply is faster than the
cosine transform code for all n less than about 65.

On the Cray Y-MP, the even-odd multiply is slower than
the normal multiply for small values of n. I do not know why

this is so. One possible explanation is that since the
even-odd algorithm, as coded, involved twice as many
vector operations on shorter vectors, the vector startup
overhead was greater. For the larger values of n, the ratio of
execution times approached the expected value of 2.

REFERENCES

1. E. Tadmor, SIAM Rev. 29, 525 (1987).

2. C. Canuto, A. Quarteroni, M. Y. Hussaini, and T. Zang, Spectral
Methods in Fluid Mechanics (Springer-Verlag, New York, 1988).

3. D. Gottlieb, M. Y. Hussaini, and S. A. Orszag, in Specfral Merhodsfor
Partial Differenfial Equations, edited by R. G. Voigt, D. Gottlieb, and
M. Y. Hussaini (SIAM, Philadelphia, 1984) p. 1.

Received October 7, 1990; accepted November 9, 1990

ALEX SOLOMONOFF*
Division of Applied Mathematics

Brown University
Providence, Rhode Island 02912

* Supported by NASA Grant NAG-l-703 and Air Force Grant AFOSR
90-0093.

