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NOTE 

A Fast Algorithm for Spectral Differentiation 

1. INTRODUCTION The required regularity is that either 

Suppose we know the value of a function at several points 
and we want to approximate its derivative at those points. 
One way to do this is to find the polynomial that passes 
through all of the data points, differentiate it analytically, 
and evaluate this derivative at the grid points. Or, we could 
generalize this idea by replacing polynomials by linear 
combinations of some other set of functions. In either case, 
if u= (u(x,), u(x,), . . . . u(x,)) is the vector of function 
values, and u’ = (u’(x,), z/(x,), . . . . z/(x,)) is the vector of 
approximate derivatives obtained by this idea, then there 
is a matrix D such that 

di,j=d”pi,.p, or di,,= -4-r..-, (2) 

u’ = Du. (1) 

Such a matrix is called a derivative matrix [ 11. 
Approximating differentiation by matrix multiplication is 

a very common computation, and a somewhat expensive 
one. A matrix-vector multiplication takes 0(n’) operations. 
This would take up most of the cpu time if it were used in 
a numerical scheme to solve a PDE, since most of the other 
computations in a PDE solution take only O(n) operations. 
At least, this is true using an explicit time-stepping scheme. 
With an implicit scheme, there are systems of equations to 
be solved and it is not clear what would use up the most 
CPU time. But with either type of scheme, any reduction in 
the number of operations would be very welcome. 

for 0 d i, j 6 n. The first corresponds to the property that if 
the vector containing function values is reversed, i.e., 
(u,, Ul, ..., u,) is replaced by (u,, u, ~ 1, ..‘, uO) then the 
derivative of the function is also reversed. The second 
regularity means that if the vector is reversed, the derivative 
is reversed and also multiplied by - 1. If the gridpoints are 
arranged symmetrically about the center of the domain of 
approximation, and the basis functions have enough sym- 
metry with respect to the center of the domain, then the 
matrix will have one of these properties. For example, the 
Chebyshev first derivative matrix has the second property, 
and the Chebyshev second derivative matrix has the first 
property. 

The entries of the Chebyshev first derivative matrix can 
be found in [2 or 31. The gridpoints used by the Chebyshev 
derivative matrix are 

7ci 
x,=cos - ) 0 i=OtoN. 

n 

Ifweletc,=c,=2andcj=1,i=1ton-1,thentheentries 
of the matrix are 

The matrices used for spectral differentiation have 
various regularities in them. It is reasonable to hope that 
they can be exploited to reduce the number of operations 
needed to do the multiplication. For some matrices this is 
already known to be true, for example the matrices based on 
trigonometric interpolation at equally spaced points, [l-3], 
or polynomial interpolation at the extrema of a Chebyshev 
polynomial [2, 31. They allow a matrix-vector multipli- 
cation in O(n log n) operations by using fast Fourier or 
cosine transforms and O(n) operations on the transformed 
vector. In this paper we present a simple algorithm for doing 
the matrix multiplication in just over half the number of 
operations required by the usual algorithm. It requires 
that the matrix have a kind of symmetry that almost all 
derivative matrices have. 

d, =Ci((-)ijkk 
Jk 

ck cxjpxk)’ 
.i#k 

d,? = -xj 
2(1-x;)’ 

2n2+ 1 
do,,= -dm,n=6. 

We can see that c,-, = cj. Since x,~ j = -xj we have 
x,-x,= -(X,-~-X,_,). Finally, since (-l)n~r+n~i= 
(-l)i+j, it is obvious that the off -diagonal entries have the 
second property. Since is also clear that the diagonal terms 
have the second property, the claim is proved. 

j Z 0, 4 (4) 
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More generally, any odd-derivative matrix based on 
polynomial interpolation at a set of points which is sym- 
metric about the center of the domain will have the second 
property. And any such even-derivative matrix will have the 
first property. So the matrix that uses data at the zeroes of 
a Legendre polynomial will have this property. The entries 
of the Legendre first and second derivative matrices can be 
found in [3]. 

So we only have to compute the left half of e’. This takes 
only n2/4 multiplications and (n2/4) - (n/2) additions. 

Similarly, with o we have 

o:= i di,jo,=(“p~“2di,jo,+d;,n-,oH+, 
j=O J=o 

= C (di,j-d;,n-j) oj. (11) 

2. DERIVATION OF THE ALGORITHM 
But o’ is even, i.e., 0; ~ j = oj : 

The fast differentiation algorithm is based on an odd- 
even decomposition of the function vector. Suppose we start 
with the second property, d, j = -d,, _ i,np j. Let u be the 
function vector, and e and o be its even and odd parts. For 
the moment, assume that the number of gridpoints, n + 1, is 
even. The case of n + 1 odd is slightly more complicated and 
will be treated later. So 

u, = e, + oi, iE (0, 1, . . . . n}, (5) 

,=o /=O 

(n ~ l)/2 
= 2 -di3H-jo,-d,(-oj) 

,=o 
(n ~ I J/2 

= 1 (d,-di,,+j)oj=o:. 
/=O 

(12) 

where So we only have to compute the left half of o’ as well. This 
takes the same number of operations as for the computation 

(ha) of e’. 

(6b) 
Finally, to reconstruct u’ from e’ and o’ we have 

and now 2.4: = ei + 0: (13a) 

e, = e n-i, 

oi= -0 n-i’ 

and 
(7) 

uA-,=eLpi +oLpj= -el+o: (13b) 

By the linearity of the derivative operator, we have for O<i<n/2. 

u’=Du=D(e+o)=De+Do=e’+o’, (8) 
The odd-even decomposition takes n additions, the odd- 

even reconstruction takes n additions and the two matrix- 

so we can differentiate e and o separately and then add them 
vector multiplications take 2((n2/4) mults + (n2/4) - (n/2) 
adds) for a total of 

together later; e’ is given by 

ei = i di,,ej= ‘npi’f2 di3jej+di.,p je,p 
j=O j=O 

= C (d;,j+ d,,-j) ej-, 
,=O 

since e is even. But e’ is odd, that is, e; ~ j = - ej : 

(n- 1)/2 
ei-,= 1 d,~i,jej++d,~i.n~je,~, 

j=O 

(n ~ I l/Z 
= C -di,,-jej-di,je, 

,=o 
(n - 1 l/2 

=- c (d,,,+d,,,_,)e,=-e:. 
j=O 

$PZ’ multiplies + kn’ + n additions, 

compared to 

(14a) 

(9) n2 multiplies + (n’ -n) additions (14b) 

for the normal algorithm. 
Many people who have read this paper have commented 

on the similarity between this algorithm and FFT. Both 
algorithms use the idea of breaking the problem into two 
pieces, solving them separately, and gluing them back 
together cheaply. However, the FFT is able to use the idea 
on the smaller subproblems, while the even-odd decom- 
position has to stop at one step. If it could be repeated past 

(10) the first step, it would be much more interesting than it is 
now. Unfortunately, I do not know how to do this. 
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Now we turn to the case where n + 1 is odd. We have been 
assuming that the sum Cy= ,, d,ej can be broken up into two 
pieces of equal size. If n + 1 is odd then this cannot be done. 
If the sum cj d,ej + di,,- je,P j goes from 0 to n/2 - 1 then 
we miss the n/2 term. If it goes from 0 to n/2 then we count 
the n/2 term twice. This is not hard to fix. We can let the sum 
go from 0 to n/2 and then divide the i, n/2-terms (the 
rightmost column) of the matrix d, + di,, ~ j by 2. In addi- 
tion, e,,, is nonzero so we must include it in our sum, but 
ei,* is zero so there is no need to compute it. So the matrix 
d, + d,, ~ j has n/2 rows and 1 + n/2 columns. For the odd 
terms, o,,~ - - 0, so we will not include it in our sums, and the 
issue of counting it twice does not occur; o$, is nonzero 
though, and we do need to compute it. So the matrix 
4, - di,,-, has 1 + n/2 rows and n/2 columns. The oddeven 
decomposition and reconstruction steps are unchanged. 

The case for d, = d,, ~ i,n ~ j is exactly the same as the case 
d,= -dn-i,,-j, at least for n + 1 even, but with one 
change: e’ is even and o’ is odd, rather than the reverse as 
before, so the reconstruction is 

and 

u: = ei + 0; (15a) 

for 0 < i < n/2. The derivation of the algorithm is the same 
as the first case, except for some sign changes. 

3. MAPPINGS 

Frequently, you do not want to use an unmodified 
spectral differentiation matrix, because either the domain of 
approximation is wrong, or the distribution of gridpoints is 
undesirable, or both. In such cases, a mapping from the new 
domain to the old one is used. Usually, the even-odd 
decomposition can still be used. 

Suppose g(x) is the mapping, then we want to compute 
the derivative of u( g(x)). By the chain rule, this is 

u’kb)) g’(x). 

The discrete version of this is 

(16) 

D, u = G’Du, (17) 

where D, is the new derivative matrix associated with the 
mapping g, G’ has g’(x,) on its main diagonal, and D is the 
unmapped derivative matrix as before. If g is antisymmetric 
(g must be monotone; it cannot be symmetric). Then the 
matrix G’D will still have symmetry, 

(G’D),-i,.-Y=g’(Xn~i)D”~;,.~,= -g’(xn-i)D,j 

= - g’(x,) Di, j = - (G’D),, (18) 

since the derivative of an antisymmetric function is sym- 
metric. So an antisymmetric mapping can be implemented 
with no increase in the number of computations. But even if 
the mapping is not antisymmetric, multiplication of a vector 
by G’ only takes n operations, so the differentiation would 
still be almost twice as fast as the normal algorithm. 

The case of the second derivative is somewhat more 
complicated: 

C4&))1”= U”MX)) g”(X) + u’(g(xI) g”(x). (19) 

The discrete approximation to this is 

D;u=(G’~D~+G”D)u, (20) 

where 0; is the new second derivative matrix associated 
with the mapping g and D2 is the unmapped second 
derivative matrix. If g is an antisymmetric function, then 
this matrix still has the desired symmetry, g” is a symmetric 
function, and g” is antisymmetric, so 

=g’2(Xn~i)D~~r,n-,+g”(X,-;)Dn-i,n~j 

= g’2(xi) D;.+ g”(x;) D, 

= (G’2D2 + G”D),. (21) 

This works if g is antisymmetric, but if g is not antisym- 
metric, then there does not seem to be any way to make the 
even-odd decomposition work. At least this is true if you 
only want the second derivative. If you want to compute 
both D,u and Diu, then you can compute Du and D2u 
using the even-odd decomposition, and then compute 
D,u and Diu from them using only U(n) operations. The 
situation with the third derivative is very similar to the 
second derivative. 

4. RESULTS 

We have used this algorithm to multiply the Chebyshev 
derivative matrix by a vector. We measured the execution 
time for this and compared it to the execution time of the 

TABLE I 

Execution Time, Sun Sparcstation 

n Normal matrix multiply Even-odd multiply Cosine transform 

16 1.5 ms 1.3 ms 2.1 ms 
32 3.3 ms 1.5 ms 3.0 ms 
64 10.6 ms 5.4 ms 4.5 ms 

128 37.5 ms 19.9 ms 11.8 ms 
256 150.7 ms 75.1 ms 19.7 ms 
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TABLE II 

Execution Time, Cray Y-MP 

n Normal matrix multiply Even-odd multiply 

16 4.4 /its 5.5 /Is 
32 8.4 ps 9.8 ps 
64 23.5 ps 18.5 fis 

128 60.5 ps 42.1 ps 
256 175.7 ps 112.3 ps 

normal matrix multiplication algorithm. The programs 
were run on a Cray Y-MP, and on a Sun Sparcstation. In 
addition, on the Sparcstation, the algorithm was compared 
to an O(n log n) algorithm that uses cosine transforms. No 
attempt was made to optimize any of this code. The results 
are in Tables I and II. 

On the Sparcstation, the even-odd multiply is roughly 
twice as fast as the normal matrix multiply for all values of 
n. In addition, the even-odd multiply is faster than the 
cosine transform code for all n less than about 65. 

On the Cray Y-MP, the even-odd multiply is slower than 
the normal multiply for small values of n. I do not know why 

this is so. One possible explanation is that since the 
even-odd algorithm, as coded, involved twice as many 
vector operations on shorter vectors, the vector startup 
overhead was greater. For the larger values of n, the ratio of 
execution times approached the expected value of 2. 
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